Microelectronics Circuits

Sixth Semester B.E. Degree Examination, Jan./Feb. 2021

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting THREE questions from Part-A and TWO questions from Part-B.

- Explain the implementation of biasing circuit by fixing V_G and connecting a resistance in the 1 source with neat diagram. (06 Marks)
 - Design the circuit in Fig.Q1(b) to establish a drain voltage of 0.1V. What is the effective resistance between drain and source at this operating point. Let V_t = 1V,

$$K_n'\left(\frac{W}{L}\right) = 1 \text{ mA/V}^2$$

Fig.Q1(b)

(06 Marks)

- Explain common gate amplifier with neat circuit diagram and small signal equivalent circuit. (08 Marks)
- Compare MOSFET and BJT in terms of: 2
 - Low frequency hybrid π model
 - Current voltage characteristics (ii)

(06 Marks)

- (iii) High frequency model With relevant equations and neat circuit diagram, explain working of MOS steering circuits.
 - (08 Marks)
- With neat diagram, explain working of basic MOS current mirror circuit.

(06 Marks)

- Draw high frequency equivalent circuit model of common source amplifier and analyze 3 a. using Miller's theorem. (08 Marks)
 - Analyze common base amplifier to find R_{in} and R_{out}. b.

(07 Marks)

- How does cascade MOS current mirror improves the performance of current mirror circuit? (05 Marks)
- With neat diagrams, explain small signal operation of MOS differential pair. Derive expression for differential gain.
 - For circuit in Fig.Q4(b), the differential amplifier uses transistor with $\beta = 100$. Evaluate:
 - Input differential Resistance Rid
 - Overall differential gain $\frac{V_0}{V}$ (neglect effect of r_0)

10EC63/10EC638

- (iii) The worst case common mode gain if the 2 collector resistances are accurate to within ±1%.
- (iv) The CMRR in dB.
- (v) The input common mode resistance (assume $V_A = 100 \text{ V}$)

Fig.Q4(b) (10 Marks)

- 5 Write short notes on:
 - a. T-equivalent circuit model of MOSFET
 - b. Multistage amplifiers
 - c. Source follower
 - d. Current source

(20 Marks)

PART – B

- 6 a. Explain the three properties of negative feedback. (09 Marks)
 - b. Draw and explain Nyquist plot of an unstable amplifier. (05 Marks)
 - c. With graph, explain how stability analysis is done using bode plot. (06 Marks)
- 7 a. With neat diagram, explain a single op amp difference amplifier and derive an expression for differential gain Ad. (07 Marks)
 - b. Briefly explain logarithmic amplifier and derive an expression for output voltage. (08 Marks)
 - e. Explain basic principle of sample and hold circuit using basic circuit. (05 Marks)
- 8 a. Write a short note on domino CMOS logic circuits. (06 Marks)
 - b. Implement $F = AB + \overline{A} \overline{B}$ using AOI gate logic. (08 Marks)
 - c. Explain the Voltage Transfer Characteristics (VTC) of CMOS inverter when Q_N and Q_P are matched. (06 Marks)

* * * * *

- --